Esame di Istituzioni di Geometria Superiore

Università dell'Insubria 26 giugno 2019

1. Si consideri il bouquet di due circonferenze

$$X = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\} \cup \{(x, y) \in \mathbb{R}^2 \mid (x - 2)^2 + y^2 = 1\} \subset \mathbb{R}^2$$

- (a) Descrivere tutti i suoi rivestimenti di grado 2. [3 punti]
- (b) Definire un rivestimento normale. Tra i rivestimenti di grado 2 elencati sopra ce ne è qualcuno non normale? [3 punti]
- (c) Descrivere un rivestimento non normale di grado 3 di X. [3 punti]
- (d) Si consideri la seguente applicazione $f: \mathbb{R} \longrightarrow X$:

$$f(t) := (\cos(4\pi t), \sin(4\pi t), \cos(2\pi t) + 2, \sin(2\pi t))$$

e sia $\overline{f}: \mathbb{R} \to X$ l'applicazione indotta da f passando al quoziente tramite la mappa esponenziale $\mathbb{R} \to S^1$. Descrivere tutti i rivestimenti di grado due e tre di X tali che \overline{f} si solleva al rivestimento. Invece f si solleva? [3 punti]

- 2. Si consideri la figura piana coi lati identificati come in figura, che chiamiamo X.
 - (a) Se ne calcoli il gruppo fondamentale. [3,5 punti]
 - (b) È un gruppo abeliano? Se ne calcoli l'abelianizzato. [3,5 punti]
 - (c) X è una superficie topologica? Spiegare perché. [3 punti]
- 3. Sia \mathcal{K} il complesso simpliciale composto di 4 vertici v_0, \ldots, v_3 , dei 5 1-simplessi $[v_0, v_1]$, $[v_0, v_2]$, $[v_1, v_2]$, $[v_1, v_3]$, $[v_2, v_3]$ e del 2-simplesso $[v_0, v_1, v_2]$.
 - (a) Controllare che sia un complesso simpliciale (scrivendo la definizione di complesso simpliciale). [3 punti]
 - (b) Calcolare i gruppi di omologia simpliciale di K. [3 punti]
 - (c) Sia ora $\mathcal{L} := \mathcal{K} \setminus \{[v_0, v_3]\}$. Controllare che \mathcal{L} sia un complesso simpliciale e calcolarne l'omologia simpliciale. [3 punti]

