ESERCIZI 1

L. Stoppino, corso di Geometria 1 Università di Pavia, a.a. 2020/21

1. Stabilire per quali $(a, b, c) \in \mathbb{R}$ i seguenti punti di $\mathbb{A}^3_{\mathbb{R}}$ sono affinemente indipendenti.

$$\left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ c \end{pmatrix}, \begin{pmatrix} a \\ b \\ 1 \end{pmatrix} \right\}.$$

Per $a=1,\,b=2$ e c=2 scrivere l'equazione del sottospazio affine che essi generano, e trovarne la giacitura.

2. Si considerino le seguenti terne di punti in $\mathbb{A}^3_{\mathbb{R}}$:

$$\begin{pmatrix} 2\\1\\2 \end{pmatrix}, \begin{pmatrix} 1\\-1\\2 \end{pmatrix}, \begin{pmatrix} 0\\1\\-1 \end{pmatrix},$$

Stabilire se sono o meno allineati. In caso positivo trovare la dimensione e una rappresentazione cartesiana dello spazio affine che generano.

3. Si considerino le seguenti terne di punti in $\mathbb{A}^3_{\mathbb{C}}\colon$

$$\begin{pmatrix} 2\\1\\-3 \end{pmatrix}, \begin{pmatrix} 1\\-1\\2 \end{pmatrix}, \begin{pmatrix} 3/2\\0\\-1/2 \end{pmatrix},$$

$$\begin{pmatrix} i \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1+i \\ 2i \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ -i \end{pmatrix},$$

$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}, \begin{pmatrix} -2 \\ -2 \\ 1 \end{pmatrix}.$$

Stabilire se sono o meno allineati. In caso positivo trovare la dimensione e una rappresentazione cartesiana dello spazio affine che generano.

4. (Sernesi Es. 10 3) Dopo aver verificato che le seguenti terne sono composte da punti non allineati in $\mathbb{A}^3_{\mathbb{R}}$, determinare equazioni parametriche e cartesiana dei piani che li contengono.

$$\begin{pmatrix} 2\\\sqrt{2}\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\\sqrt{2} \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix},$$

$$\begin{pmatrix} 5 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ \sqrt{5} \end{pmatrix}, \begin{pmatrix} -3 \\ 1 \\ \pi/2 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -2 \\ 1 \\ |0 \end{pmatrix}, \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}.$$

- 5. Sia \mathbb{A} uno spazio affine su un campo K.
 - (a) Dimostrare che se K possiede almeno n+1 elementi, allora \mathbb{A} non può essere unione di di n sottospazi affini propri (sugg. usare un'induzione sulla dimensione dello spazio e/o sul numero di sottospazi affini).
 - (b) Dedurre dal punto precedente che uno spazio affine su un campo infinito (come sono \mathbb{R} , \mathbb{Q} e \mathbb{C}), non può essere unione finita di suoi sottospazi affini propri.
- 6. Stabilire se i seguenti tre piani dati tramite le loro equazioni cartesiane in $\mathbb{A}^3_{\mathbb{R}}$, appartengono o no a uno stesso fascio (proprio o improprio).

(a)
$$x - y + z = 0$$
, $-2x + 4y - 6z + 2 = 0$, $y - 2z + 1 = 0$;

(b)
$$2x - 3y + 3 = 0$$
, $x - y + 6 = 0$, $x - 3z - 1 = 0$;

(c)
$$x - 4y = 0$$
, $2x - 8y + 2 = 0$, $2x + z = 0$;

(d)
$$x - y + 2z = 5$$
, $2x - 2y + 4z = 8$, $-x + y - 2z = 0$.

7. Si considerino le seguenti terne di punti in $\mathbb{A}^2_{\mathbb{R}}$.

$$\left\{ P_1 = \begin{pmatrix} 1/2 \\ 1 \end{pmatrix}, P_2 = \begin{pmatrix} 1/2 \\ 100 \end{pmatrix}, P_3 = \begin{pmatrix} 1/2 \\ \pi/4 \end{pmatrix} \right\}.$$

$$\left\{ Q_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, Q_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, Q_3 = \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right\}.$$

$$\left\{ R_1 = \begin{pmatrix} 5/4 \\ 9/4 \end{pmatrix}, R_2 = \begin{pmatrix} -3/2 \\ -1/2 \end{pmatrix}, R_3 = \begin{pmatrix} 1/5 \\ 6/5 \end{pmatrix} \right\}.$$

- (a) Stabilire se sono allineati o meno.
- (b) Esiste un'affinità f di $\mathbb{A}^2_{\mathbb{R}}$ tale che che per ogni i=1,2,3 $f(P_i)=Q_i$?
- (c) Esiste un'affinità f di $\mathbb{A}^2_{\mathbb{R}}$ tale che per ogni i=1,2,3 $f(P_i)=R_i$?
- (d) Esiste un'affinità f di $\mathbb{A}^2_{\mathbb{R}}$ tale che per ogni i=1,2,3 $f(Q_i)=R_i$?
- (e) Stesse domande per una isometria (considerando la struttura euclidea standard su $\mathbb{A}^2_{\mathbb{R}}$).

- 8. Dimostrare che il gruppo di omotetie di centro fissato O in uno spazio affine su un campo K (si veda la definzione nella Sezione 14 del Sernesi, Geometria 1) è isomorfo al gruppo moltiplicativo K^* .
- 9. Sia \mathbb{A} uno spazio affine con spazio vettoriale associato V su un campo K. Sia fissato un punto $O \in \mathbb{A}$; identifichiamo \mathbb{A} con V mediate la corrsipondenza $P \mapsto \overrightarrow{OP}$. Una combinazione lineare $a_1v_1 + \ldots + a_nv_n$ di vettori v_i di V, con i coefficienti $a_i \in K$ si dice combinazione baricentrica se $\sum_{i=1}^n a_i = 1$.
 - (a) Verificare che un sottoinsieme di V corrisponde ad un sottospazio affine di \mathbb{A} se e solo se è chiuso per combinazioni baricentriche.
 - (b) Verificare che un'applicazione f da \mathbb{A} in sè stesso è una affinità se e solo se rispetta le combinazioni baricentriche, cioè per ogni $n \in \mathbb{N}$, per ogni n-upla di vettori v_1, \ldots, v_n , per ogni n-upla di $a_i \in K$ tali che $\sum_{i=1}^n a_i = 1$, $f(a_1v_1 + \ldots + a_nv_n) = a_if(v_1) + \ldots + a_nf(v_n)$.
- 10. Si considerino i seguenti punti dello spazio affine $\mathbb{A}^2_{\mathbb{R}}$: $P_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $P_2 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$, $P_3 = \begin{pmatrix} 3 \\ 3 \end{pmatrix}$, $Q_1 = \begin{pmatrix} 1 \\ 8 \end{pmatrix}$, $Q_2 = \begin{pmatrix} 0 \\ 7 \end{pmatrix}$, $Q_1 = \begin{pmatrix} 7 \\ 3 \end{pmatrix}$. Esiste una affinità f di $\mathbb{A}^2_{\mathbb{R}}$ tale che $f(P_i) = Q_i$ per ogni i = 1, 2, 3? È unica? Si scriva esplicitamente f.
- 11. Sia \mathbb{A} uno spazio affine reale di dimensione n. Fissiamo un sistema di riferimento affine. Sia C il punto di coordinate affini (c_1, \ldots, c_n) . Sia $\sigma_p \colon \mathbb{A} \to \mathbb{A}$ la simmetria rispetto a C, definita così: per ogni $P \in \mathbb{A}$, $\sigma_C(P)$ è il punto tale che

$$\overrightarrow{PC} = \overrightarrow{C\sigma_C(P)}$$
.

- (a) Dimostrare che in coordinate $\sigma_C(x_1,\ldots,x_n)=(2c_1-x_1,\ldots,2c_n-x_n)$.
- (b) Dimostrare che la composizione $\sigma_C \circ \sigma_D$ di due simmetrie di centri rispettivamente C e D rispetto ad un punto è una traslazione di vettore $2\overrightarrow{DC}$.
- 12. Discutere le seguenti affermazioni. In uno spazio affine A.
 - (a) Le triplette di punti distinti allineati sono fra loro tutte affinemente equivalenti.
 - (b) Gli insiemi formati da 4 punti distinti complanari sono tutti fra loro affinemente equivalenti.
- 13. In uno spazio affine di dimensione 3 sia Π_1, Π_2, Π_3 una terna di piani tali che l'intersezione $\Pi_1 \cap \Pi_2 \cap \Pi_3$ è un unico punto p. Dimostrare che per ongi altra terna di piani $\Sigma_1, \Sigma_2, \Sigma_3$ tali che $\Sigma_1 \cap \Sigma_2 \cap \Sigma_3$ è un solo punto, esiste $f \in Aff(\mathbb{A})$ tale che $f(\Pi_i) = \Sigma_i$ per ogni i = 1, 2, 3.

- (a) Dimostrare che per sottoinsiemi di A, spazio affine reale, la convessità è una proprietà affine.
 - (b) Dimostrare che per sottoinsiemi di \mathbb{E} , spazio euclideo la convessità è una proprietà euclidea.
 - (c) Fare un esempio di due sottoinsiemi di uno spazio affine reale che sono entrambi convessi ma non sono affinemente equivalenti.
 - (d) Stesse domande usando il concetto di stellato in uno spazio affine reale e in uno spazio euclideo.
 - (e) Esistono proprietà euclidee che non sono affini?
 - (f) Esistono proprietà affini che non sono euclidee?
- 15. Consideriamo \mathbb{R}^3 con la sua naturale struttura affine e la naturale struttura euclidea indotta dal prodotto scalare standard. Si considerino i punti

$$P_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, P_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, P_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, P_4 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix},$$

$$Q_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, Q_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, Q_3 = \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix}, Q_4 = \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}.$$

- (a) Esiste un'affinità f tale che $f(P_i) = Q_i$ per i = 1, ..., 4? Se sì, scriverla esplicitamente in coordinate.
- (b) Esiste un'isometria f tale che $f(P_i) = Q_i$ per $i = 1, \dots 4$?
- (c) Esiste un'isometria f tale che $f(P_i) = Q_i$ per i = 1, 2? Se e sì, scriverla esplicitamente in coordinate.
- 16. Fare un esempio di sue sottoinsiemi convessi di uno spazio euclideo che non siano congruenti.
- 17. Sia \mathbb{E} uno spazio euclideo bidimensionale. Siano $s, r \subset \mathbb{E}$ due rette incidenti in un punto $P = s \cap r$. Siano ρ_r e ρ_s le riflessioni rispetto alle due rette. Dimostrare che $\rho_r \circ \rho_s$ è una rotazione di centro P e di angolo 2θ dove θ è l'angolo formato da r ed s.
- 18. Sia \mathbb{E} uno spazio euclideo bidimensionale. Mostrare che la composizione di due rotazioni di \mathbb{E} è o una rotazione oppure una traslazione.