Geometria I

Università dell'Insubria Esercizi 1

a.a. 2016/2017

- 1. Vero o falso? [se vero spiegate perché, se falso esibite un controesempio]
 - (a) I punti di uno spazio topologico sono sempre sottoinsiemi chiusi.
 - (b) Esistono spazi topologici in cui i punti non sono nè chiusi nè aperti.
 - (c) Esistono spazi topologici metrizzabili in cui i punti non sono nè chiusi nè aperti.
 - (d) Esistono spazi topolgici in cui i punti sono sia chiusi sia aperti.
- 2. La famiglia $\mathcal{F}:=\{(-\infty,a],a\in\mathbb{R}\}\cup\{\mathbb{R},\emptyset\}$ è una topologia su \mathbb{R} ?
- 3. Dimostrare che su un insieme X la topologia cofinita coincide con la topologia discreta se e solo se X ha cardinalità finita.
- 4. Dimostrare che l'unica topologia metrizzabile su uno spazio finito è la topologia discreta.
- 5. Descrivere tutte le possibili topologie su un insieme con 3 elementi, e confrontarle.
- 6. Definiamo seguenti funzioni $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$:
 - $d(\underline{x}, y) := \sum_{i=1}^{n} |x_i y_i|;$
 - $d'(\underline{x},\underline{y}) := \max_i \{|x_i y_i|\}.$
 - (a) Dimostrare che sono delle metriche su \mathbb{R}^n ;
 - (b) Disegnare le bolle aperte in \mathbb{R}^2 ;
 - (c) Le metriche d e d' sono topologicamente equivalenti alla metrica euclidea d_e su \mathbb{R}^n ?
- 7. Sia $B_r(x) \subset \mathbb{R}^n$ la bolla di centro x e raggio r con la metrica eulcidea. Stabilire se i seguenti sottoinsiemi di \mathbb{R}^n sono una base per la topologia euclidea.
 - (a) $\{B_r(x), x \in \mathbb{R}^n, r \in \mathbb{Q}^+\};$
 - (b) $\{B_r(x), x \in \mathbb{Q}^n, r > 0\};$
 - (c) $\{B_r(x), x \in \mathbb{R}^n, r \ge 1\}.$
- 8. Sia (X,d) uno spazio metrico. Definiamo la funzione $d': X \times X \longrightarrow \mathbb{R}$

$$d'(x,y) = \frac{d(x,y)}{d(x,y)+1}, \text{ per ogni } x,y \in X.$$

1

- (a) Dimostrare che d' è una metrica su X tale che $d'(x,y) < 1 \ \forall x,y \in X \ (d'$ si chiama normalizzazione della metrica d).
- (b) Dimostrare che d e d' sono topologicamente equivalenti.
- (c) Dimostrare che non esistono due numeri reali $a \in b$ tali che per ogni $x, y \in X$ vale che

$$ad(x,y) \le d'(x,y) \le bd(x,y).$$

9. Sia X l'insieme

$$X = \{f: [0,1] \to \mathbb{R} \mid f \text{ continua rispetto alla metrica euclidea} \},$$

Definiamo su $X \times X$ la funzione

$$d(f,g) = \sup_{x \in [0,1]} |f(x) - g(x)|, \quad \forall f, g \in X$$

- (a) Dimostrare che d è ben definita e che è una metrica su X.
- (b) Stabilire se i seguenti sottoinsiemi di X sono aperti e/o chiusi (possono non essere nè l'uno nè l'altro!) rispetto alla metrica d:

$$A := \{ f \in X \mid f(0) > 1 \};$$

$$B := \{ f \in X \mid f(0) = 1 \};$$

10. Sia $X = \{2, 3, ...\}$ l'insieme dei numeri interi maggiori o uguali a 2. Per ogni $n \in X$ definiamo gli insiemi

$$U_n := \{ m \in X \mid m \text{ divide } n \}.$$

- (a) Dimostrare che gli U_n , al variare di n in X formano una base per una topologia \mathcal{T} su X.
- (b) Lo spazio topologico (X, \mathcal{T}) è T2? I suoi punti sono chiusi?
- (c) Per ogni $n \in X$, descrivere la chiusura di $\{n\}$ in (X, \mathcal{T}) .
- 11. Si consideri la metrica euclidea d_e su \mathbb{R}^n . Per ogni punto $p \in \mathbb{R}^n$ e per ogni r > 0 sia

$$C_r(p) := \{ x \in \mathbb{R}^n \mid d_e(x, p) \le r \}.$$

- (a) Dimostrare che $C_r(p)$ è la chiusura della palla di raggio r centrata in p.
- (b) Si dica se esiste una topologia su \mathbb{R}^n per la quale la famiglia $\mathcal{C} := \{C_r(p), r > 0, p \in \mathbb{R}^n\}$ è una base.
- (c) Qual'è la topologia generata da \mathcal{C} su \mathbb{R}^n ?
- 12. Dimostrare che la topologia indotta da una metrica su un insieme X è la meno fine delle topologie su X per cui le bolle sono aperte.
- 13. Esercizio 3.5 pag. 41 del Manetti: dimostrazione topologica che esistono infiniti numeri primi.

- 14. Dimostrare che la famiglia di intervalli $\{[a,b), a>b, a,b\in\mathbb{Q}\}$ non è una base per la topologia di Sorgenfrey su \mathbb{R} .
- 15. Sia X uno spazio topologico. Dimostrare che per ogni sottoinsieme $S \subseteq X$ vale che

$$(X \setminus S)^{\circ} = X \setminus \overline{S}.$$

(la parte interna del complementare è il complementare della chiusura).

- 16. Sia X uno spazio topologico. Dimostrare che per ogni coppia di sottoinsiemi A, $B \subseteq X$ vale che:
 - (a) $\overline{A \cup B} = \overline{A} \cup \overline{B}$;
 - (b) $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$;
 - (c) Fare un esempio in cui l'inclusione del punto sopra può essere stretta.
- 17. Sia \mathcal{E} la topologia euclidea su \mathbb{R} . Sia \mathcal{T}_S la topologia di Sorgenfrey su \mathbb{R} , i.e., la topologia una cui base di aperti è la famiglia degli intervalli del tipo [a, b), con a < b. Si consideri l'insieme

$$X := \left\{ -\frac{1}{n} : n > 0 \right\} \subset \mathbb{R}.$$

- (a) $X \in \text{chiuso in } (\mathbb{R}, \mathcal{E})$? E in $(\mathbb{R}, \mathcal{T}_S)$?
- (b) In entrambi i casi, qual'è la chiusura di X?
- 18. Consideriamo \mathbb{R} con Siano $E = (0, 1), F = [0, 1) \subset \mathbb{R}$. Trovare la chiusura, l'interno e la frontiera di E ed F con le seguenti topologie:
 - (a) La topologia discreta \mathcal{D} ;
 - (b) La topologia concreta C;
 - (c) La topologia cofinita \mathcal{K} (gli aperti propri sono i complementari degli insiemi finiti di punti);
 - (d) La topologa euclidea \mathcal{T}_e ;
 - (e) La topologia della semicontinuità superiore \mathcal{T}_{sup} ;
 - (f) La topologia di Sorgenfrey \mathcal{T}_S .