Corso di Istituzioni di Geometria Superiore

Docente: Lidia Stoppino Università dell'Insubria 9 luglio 2014

Cercate sempre di dimostrare le vostre affermazioni

- 1. Sia X il il prodotto wedge (incollamento in un punto) di S^2 con S^1 : $X = S^2 \vee S^1$.
 - (a) Classificare tutti i rivestimenti connessi di X.
 - (b) Si considerino le seguenti applicazioni continue $f, g: S^1 \longrightarrow X$:
 - f è ottenuta componendo la mappa

$$z \in S^1 \mapsto z^6 \in S^1$$
 (visti come sottospazi di \mathbb{C})

con l'inclusione $S^1 \subset X$.

- Consideriamo $\overline{\gamma}:S^1\to S^2$ indotta dalla mappa $\gamma:[0,1]\to S^2\subset\mathbb{R}^3$ così definita:

$$\gamma(t) := (0, \cos(2\pi t), \sin(2\pi t)),$$

e q si ottiene componendo con l'inclusione $S^2 \subset X$.

Quali sono i rivestimenti connessi \widetilde{X} di X tali che f ammetta un sollevamento $\widetilde{f}: S^1 \longrightarrow \widetilde{X}$? Stessa domanda per la mappa g.

- 2. Siano X e Y le figure piane con l'identificazione dei lati illustrata in figura.
 - (a) Qualcuno di questi spazi è una superficie topologica?
 - (b) Calcolarne i gruppi fondamentali.
 - (c) Calcolarne i gruppi di omologia.
 - (d) Per almeno uno degli spazi esibire esplicitamente una triangolazione (cioè un complesso singolare il cui spazio topologico soggiacente sia lo spazio dato), scriverne il complesso cellulare e calcolare l'omologia in questo modo.
 - (e) se qualcuno tra X e Y è una superficie topologica, scriverne la forma canonica secondo la classificazione delle superfici.
- 3. Sia \mathcal{K} un complesso simpliciale e $v \in \mathcal{K}^{(0)}$ un suo vertice. Dimostrare che

$$H_n(\mathcal{K}, v) \cong \widetilde{H}_n(\mathcal{K}) \qquad \forall n \in \mathbb{N}$$

usando la sequenza esatta di omologia della coppia (\mathcal{K}, v) .