ESERCIZI A CASA. I- ottobre 2013

Corso di Geometria I, Università dell'Insubria

- 1. Consideriamo \mathbb{R} con la topologia cofinita (gli aperti propri sono i complementari degli insiemi finiti di punti). Sia I = (0, 1). Trovare la chiusura, l'interno e la frontiera di I.
- 2. (Topologia indotta da una funzione sul codominio) Sia X uno spazio topologico con topologia \mathcal{T} , Y un insieme, e $f: X \longrightarrow Y$ un'applicazione. Consideriamo la famiglia di sottoinsiemi di Y

$$f_*\mathcal{T} := \{ A \subseteq Y \mid f^{-1}(A) \in \mathcal{T} \}.$$

- (a) Dimostrare che $f_*\mathcal{T}$ è una topologia su Y.
- (b) Dimostrare che f è continua rispetto a \mathcal{T} su X e $f_*\mathcal{T}$ su Y.
- (c) Dimostrare che $f_*\mathcal{T}$ è la più fine delle topologie su Y che rendono f continua.
- 3. Sia $f: X \longrightarrow Y$ un'applicazione aperta tra spazi topologici, e sia $S \subseteq Y$ un sottoinsieme denso. Dimostrare che $f^{-1}(Y)$ è denso in X.
- 4. Siano X e Y due spazi metrizzabili. Dimostrare che il loro prodotto topologico è metrizzabile. Una strategia possibile è questa: siano d_X e d_Y metriche su X e Y rispettivamente che inducono le topologie.
 - (a) Dimostrate che la funzione

$$d((x,y),(x',y')) := \max\{d_X(x,x'),d_Y(y,y')\}\$$

per $(x, y), (x', y') \in X \times Y$ è una metrica su $X \times Y$.

- (b) Dimostrate che la topologia indotta da d è la topologia prodotto.
- 5. Sia $f: X \longrightarrow Y$ una funzione continua tra spazi topologici in cui Y sia T2. Dimostrare che il grafico Γ_f di f è chiuso nello spazio prodotto $X \times Y$.

$$\Gamma_f = \{(x, f(x)) \mid x \in X\} \subseteq X \times Y$$

- 6. Dimostrare che
 - (a) uno spazio X è regolare se e solo se per ogni punto $x \in X$ e per ogni aperto $\mathcal{U} \in \mathcal{I}(x)$ esiste un aperto \mathcal{V} tale che

$$x \in \mathcal{V} \subseteq \overline{\mathcal{V}} \subseteq \mathcal{U};$$

(b) uno spazio X è normale se e solo se per ogni chiuso $C\subseteq X$ e per ogni aperto $\mathcal U$ che contiene C esiste un aperto $\mathcal V$ tale che

$$C \subseteq \mathcal{V} \subseteq \overline{\mathcal{V}} \subseteq \mathcal{U}$$
.

7. Sia $(\mathbb{R}, \mathcal{J}_S)$ la retta di Sorgenfrey. Dimostrare che è uno spazio normale.